

Background & Motivation

It is easy to fool a DNN by crafting adversarial perturbations:

Prediction: Dog

But **Scaling-Up** the Perturbation brings **Unrealism**:

(a) PGD Attack with larger Budget: $\epsilon_{\infty} = 32/255$

How to make the adversarial attacks scalable, and preserving the stealthiness?

(c) Style-based Attacks

Diffusion-Based Adversarial Sample Generation for Improved Stealthiness and Controllability

Haotian Xue¹, Alexandre Araujo², Bin Hu³, Yongxin Chen¹

Prediction: Cat

(b) Adversarial Patch

• Our Approach: Diff-PGD

 $x_0^t = \text{SDEdit}(x^t, K)$ and $x^{t+1} = \mathcal{P}_{B_{\infty}(x,\epsilon)} \left[x^t + \eta \operatorname{sign} \nabla_{x^t} l(f_{\theta}(x_0^t), y) \right].$

Key Strengths:

- Plug-and-play, fully off-the-shelf
- > Can generate samples with higher stealthiness
- \succ Can be easily applied to many attacks (e.g. digital) attacks, style-based attacks, physical-world attacks)

Effectiveness analysis:

- Can still achieve 100% success rate with 5 PGD steps
- > Cost more, but can be largely optimized using
- approximated gradient
- > Higher stealthiness, proved using human evaluations
- > Stronger anti-purification and transferability

¹GaTech, ²NYU, ³UIUC

Main Results

(a) Digital Attacks

 x_{PGD} (b) Style-based Attacks

Takeaway: Diff-PGD makes it possible to flexibly scale-up adversarial perturbations to preserve the stealthiness !

- More results can be found in our paper and GitHub repo - Feel free to contact me if you have further questions

0_{PGD}

'Neckless'

